
 Abstract – M icrofabr icated sili con arr ay structures, such as
those being developed by the VSAMUEL consor tium may one
day provide inexpensive yet highly selective chronically
implanted interfaces to the peripheral nervous system. In the
present study we examined the feasibili ty of implanting such
microelectrodes into peripheral nerve tissue by characterizing
the mechanical forces required for implantation. We
conducted in-vitro implantation experiments into excised
rabbit peripheral nerve with electrosharpened tungsten
needles similar in dimension to the VSAMUEL probes. A
needle was manually advanced through the epineur ium and
perineur ium using a micro-manipulator . The force applied to
the needle dur ing the insertion process was measured using a
custom buil t force detection device. We found that a force
greater than 2 mN was necessary to insert the needle. Clear
dimpling of the nerve sur face was also observed pr ior to
penetration.

Keywords - Peripheral nerve, micro-electrodes, tungsten
needle, recording, insertion force.

I. INTRODUCTION

Cuff electrodes have long shown the abilit y to provide
a chronic reliable interface to record peripheral nerve
activity. The electrodes have found their way into
application in advanced closed-loop functional electrical
stimulation (FES) systems, which use signals from natural
nerve sensors as feedback [1,2]. However, the success of
the FES control is limited by the quality of the information
recorded by the electrodes.

Intrafascicular electrodes were developed to provide a
more selective interface by penetrating the nerve sheath
and placing the recording/stimulating site within the nerve.
Using intrafascicular electrodes, Yoshida and Horch
successfully extracted joint angle from muscle afferent
activity, and demonstrated that linear real-time control of
ankle flexion-extension movement was possible [3]. Given
electrodes with greater selectivity than the nerve cuff a
finer graded control might be achieved.

Microelectrodes (metal, glass micro-pipette or
photoengraved types) can potentially register activity from
single axons, and these electrodes may therefore be an
attractive alternative peripheral nerve interface.

Recordings from individual nerve cells in the brain, has
been one of the main techniques used to study how the
brain processes information to control body functions [4].
Similarly, recordings from the sensory afferents in
peripheral nerves have shown to contain information on

body movement and orientation of the body in space [1-3].
Future use of information recoreded from these afferents
could broaden the number of possible applications and
possible movements to be controlled by FES.

The mechanics of insertion and density of
microelectrodes sites have been studied [5], however,
similar studies in peripheral nerve do not exist. The
objective of the present study was to determine the
necessary force to implant a microelectrode through the
epineurium and perineurium into peripheral nerve.

II . METHODOLOGY

Peripheral nerve tissue was obtained a from a New
Zealand White rabbit immediately after euthanasia. The
sciatic nerve and it's distal tibial and peroneal branches
were exposed in the rabbit's left leg and removed. The
excised nerve was stored in a normal 0.9% saline solution
until the measurements were made. During the insertion
experiments the peripheral nerve tissue was kept immersed
in the saline solution. Sutures were tied to the nerve ends
as anchor and to adjust the tension on the nerve (Figure
1A). The insertion force was measured using a custom
build force transducer device described in [6]. The force
sensor consisted of a DC-DC lateral displacement
transducer (LVDT 0200-000, Trans Tek. Inc.,
Connecticut, USA), a steel core attached to a spiral spring
and a coupling junction attached to the probe. In the
present experiment, we characterized the insertion force
using a 50µm electro-sharpened tungsten needle. The
displacement of the steel core reflects the deflection of the
spring d. The loading force of the tungsten needle F are
related to the spring constant k by Hooke's law:

FLOADING =  -kSPRING • dCORE

The device (core, attatched needle and spring) was
calibrated on a regular laboratory scale to determine the
spring constant. The spring constant was estimated to 30
N/m . The tungsten needle was advanced manually using a
micromanipulator. The insertion speed was not controlled
during the experiment. The insertion angle of the tungsten
needle was kept normal to the surface of the peripheral
nerve. Furthermore, the effect of insertion angle and
insertion speed was not studied.
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Figure 1. (A) The experimental set-up. The peripheral nerve tissue was kept immersed in 0.9% saline saline solution . The custom build force measurement
device consisted of a linear displacement transducer and a steel core moving in it's center. (B) The force applied to the tungsten needle at contact and
insertion plotted as a function of time.

III . RESULTS

The force applied to the tungsten needle at contact and
insertion was measured and the results are plotted in
Figure 1B. Dimpling started to occur at the point of
contact between the nerve and the tungsten needle. The
force and the dimpling increased as the needle was
advanced further. The dimple in the nerve disappeared as
the penetration force of the epineurium was approximately
2 mN. Simultaneously, at this point the dimpling
disappeared, and the measured force decreased.

IV. DISCUSSION AND CONCLUSIONS

It was possible to penetrate the epineurium with the
tungsten needle. However, the penetration force in the
present experiment was higher than the penetration forces
observed during insertion of tungsten needles in rat brain
[6]. To provide single unit information in the peripheral
nerve,  the needle must be able to sustain an axial load of
at least 2 mN without breaking or causing other damage to
the electrode. In the present experiment a single-shaft
needle electrode type was used. It has been reported, that
multi -shaft probes can produce a pin cushion effect on the
tissue, before the probes penetrate the surface.
Furthermore, the insertion force increases with increasing
number of shafts of the microelectrode [6]. It can therefore
be expected that although a higher overall force is required
to insert a multiple-shaft microelectrode into peripheral
nerve, each individual shaft would likely require the same
amount of force as a single shaft for insertion.

The present work will pave the way for modeling of the
insertion mechanics of electrodes into peripheral nerve and
towards more eff icient design and implantation techniques
of intrafascicular electrodes.
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